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1. Introduction
Due to their wide ranging applications in chemical, biological
and processing industries, considerable effort has been devoted to
the study of the hydrodynamic behaviour of fluid spheres in another
immiscible liquid phase [1,2]. While numerous studies dealing
with the behaviour of single particles provide useful insights, one
frequently encounters ensembles of droplets in engineering appli-
cations. In recent years, considerable research efforts have been
directed in developing reliable theoretical/numerical methods for
the prediction of the settling velocity in liquid–liquid systems to
evaluate their stability and/or to estimate the available contact time
between the two phases. Over the years, significant information
has been reported on the settling velocity of single fluid spheres
[3–5] and their ensembles [6–8]. Thus, it is possible to estimate
the settling velocity of the dispersed phase in these systems over
conditions of practical interest when both phases are Newtonian
fluids.

On the other hand, many high molecular weight polymers
and their solutions, slurries, foams and emulsions encountered in
several industrially important applications display shear-thinning,
shear-thickening, yield stress and viscoelastic behaviour [9]. Due to
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rsed phase rheology on the drag phenomena of single and of ensembles of
immiscible power-law continuous phase has been studied numerically at
he results presented herein encompass the following ranges of conditions:
˚ ≤ 0.6, 0.6 ≤ ni ≤ 1.6 and 0.6 ≤ no ≤ 1.6, thereby enabling the effects of the
internal to external fluid characteristic viscosity ratio (k), of the volume
(˚) and of the two power-law indices (ni , no) on drag coefficient to be

cilitates the estimation of the rate of sedimentation of single fluid spheres
nt continuous phase. Within the range of conditions studied herein, the
eology is found to be rather small.

© 2008 Elsevier B.V. All rights reserved.

the wide occurrence of non-Newtonian fluid behaviour, many stud-
ies are available which elucidate the influence of the continuous
phase rheology (especially of shear-thinning and viscoelastic-
ity) on the drag of single Newtonian fluid spheres, e.g., see
Refs. [10–14] and for ensembles of fluid spheres [15–18]. Hence,

reliable drag results are now available over the ranges of condi-
tions (1 ≤ Reo ≤ 200, 0.6 ≤ no ≤ 1.6, 0.1 ≤ k ≤ 50) for single spheres
and over the range of volume fraction of the dispersed phase
(0.2 ≤ ˚ ≤ 0.6) for ensembles. Broadly speaking, shear-thinning
fluid behaviour reduces drag while shear-thickening enhances it as
compared to its value in Newtonian continuous media otherwise
under identical conditions.

In contrast, very little is known about the case when the dis-
persed phase or both phases exhibit non-Newtonian behaviour.
For instance, Tripathi and Chhabra [19] used the velocity and
stress variational principles to obtain approximate upper and lower
bounds on the drag of a power-law fluid sphere falling in another
power-law medium. The two bounds diverge with the increasing
degree of shear-thinning behaviour, i.e., the decreasing value of the
power-law index. Subsequently, this work was extended to obtain
approximate upper and lower bounds on the drag (or rate of sed-
imentation) of ensembles of fluid spheres via the free surface cell
model [20]. In the creeping flow region, both these studies sug-
gested the influence of the dispersed phase rheology to be rather
small in the limit of the zero Reynolds number. On the other hand,
Gurkan [21] considered the case of a power-law drop falling in a
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Newtonian continuous phase. Their results embracing the range of
conditions (10 ≤ Reo ≤ 50, 0.1 ≤ k ≤ 1000 and 0.6 ≤ ni ≤ 1) also sug-
gest the effect of the dispersed phase rheology to be rather small,
albeit their numerical results are believe be inaccurate in the lim-
iting case of both phases being Newtonian fluids thereby casting
some doubts about the reliability of their results for power-law
fluids [3–5,13].

Similarly, there have been a few experimental results involving
non-Newtonian fluid spheres settling in a Newtonian continu-
ous medium. Marrucci et al. [22] reported experimental terminal
velocity data in the creeping flow regime extending over the
range of parameters 0.0045 ≤ k ≤ 1.88 and 0.53 ≤ ni ≤ 0.745. How-
ever, due to the contamination by surface active agents which tend
to immobilize the free surface of drops, their results are in com-
plete agreement with the Stokes expression for solid spheres, even
though the highest value of the viscosity ratio, k, in their study is
only of the order of 2. Gillapsy and Hoffer [23] reported experiments
on the drag coefficients of Newtonian and power-law liquid drops
falling in air at large Reynolds numbers and reported no difference
between the drag values for Newtonian and non-Newtonian liq-
uid drops. This is also not at all surprising as their results relate to
high values of the Reynolds number wherein the role of viscosity is
expected to be small. Rodrigue and Blanchet [11] and Rodrigue [14]
have carried out experimental studies on the motion and shapes of
viscoelastic drops in another Newtonian and/or viscoelastic fluid
with or without the presence of surfactants. However, the major
thrust of their study was on shape transitions and thus no drag
results were reported. Also, their experimental fluids exhibited
both shear-thinning and viscoelastic characteristics and therefore,
it is not possible to delineate the influence of these two character-
istics.

It is thus clear that no prior results are available on the drag of
single fluid spheres and their ensembles when the dispersed phase
or both phases exhibit power-law fluid behaviour in the moder-
ate Reynolds number range. This work aims to fill this gap in the
literature.

2. Problem statement and description

Since extensive descriptions of the problems considered herein
are available elsewhere [7,13,18], only the salient features are
repeated here. A spherical coordinate system (r, �, �) with its ori-
gin at the centre of the drop is used with polar axis (� = 0) directed

along the direction of flow. The flow is axisymmetric, i.e., v� is zero
and no flow variable depends on the �-coordinate. The dimension-
less governing equations for this flow in their conservative form
are:

• Continuity equation

1
r2

∂
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• �-component of momentum equation
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where subscripts i, o represent the internal (dispersed phase) and
the external (continuous phase) flow variables, respectively. For an
incompressible fluid, the extra stress tensor (�xy) is related to the
rate of strain tensor (εxy) as:

�xy = 2�εxy; x, y = r, �, � (4)

The viscosity of a power-law liquid is given as:

� =
(∏

ε

2

)(n−1)/2

(5)

where �ε is the second invariant of the rate of deformation tensor
and its expression in terms of vr and v� and their derivatives is
available in standard books (e.g., see [24]). Eq. (5) represents shear-
thinning, Newtonian and shear-thickening fluid behaviour for n < 1,
n = 1 and n > 1, respectively. In the above equations, velocity has
been scaled using Uo, radial coordinate using the drop radius R,
pressure using 	U2

o , components of the rate of strain tensor by Uo/R,
viscosity by a reference viscosity �ref (=m(Uo/R)(n−1)), extra stress
components by �ref(Uo/R) and time by R/Uo. Here m is the power-
law fluid consistency index and n is the power-law behaviour index.
The Reynolds number for the external phase is defined as follows:

Reo = 	oU(2−no)
o (2R)no

mo
(6)

The two Reynolds numbers, Rei and Reo are inter-related via the
characteristic viscosity ratio and the density ratio as follows:

Rei = Reo


k
(7)

where 	 is the density of fluid, 
 is the density ratio (	i/	o) and k
is the characteristic viscosity ratio defined as:
k =
(

mi

mo

)(
2R

Uo

)(no−ni)
(8)

For treating the motion of ensembles, within the framework
of the free surface cell model [25], the inter-drop interactions
are approximated by postulating each drop to be surrounded
by a hypothetical envelope of the continuous fluid of radius R∞
[1,7,8,15–18,25]. The dimensionless radius of the outer spherical
envelope is related to the overall mean volume fraction of the dis-
persed phase, ˚, as:

R∞ = ˚−1/3 (9)

Therefore, by simply varying the value of R∞, one can simulate
the ensembles of different volume fractions of the dispersed phase
including the limiting case of a single droplet by setting R∞ → ∞,
i.e., ˚ → 0.

The relevant boundary conditions for this flow can be written in
their dimensionless form as follows:

• At the outer boundary (r = R∞):

(vr)o = − cos � (10)
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4. Results and discussion

4.1. Validation of results

The extensive benchmarking and validation for the flow of
Newtonian and power-law fluids over a single and clusters of
fluid (Newtonian) and rigid spheres have been reported else-
where [7,13,18]. Table 3 shows the additional comparisons of Cd
for ensembles of fluid spheres in creeping flow regime when both
N. Kishore et al. / Chemical Eng

(v�)o = sin �; for the case of a single drop (11)

(�r�)o = 0; for the case of an ensemble of drops (12)

• At the fluid–fluid interface (r = 1):

(vr)i = (vr)o = 0 (13)

(v�)i = (v�)o (14)

(�r�)i = (�r�)o (15)

• Along the axis of symmetry (� = 0,�):

(v�)i = 0;
∂(vr)i

∂�
= 0 (16)

(v�)o = 0;
∂(vr)o

∂�
= 0 (17)

• At the centre of the drop (r = 0):

(vr)i and (v�)i remain finite (18)

Once the fully converged velocity and pressure fields are known,
the individual and total drag coefficients can be evaluated using
the following expressions:

Cd = 2Fd

	oU2
o �R2

= Cdp + Cdf (19)

where the pressure and frictional components of the total drag, Cdp
and Cdf, respectively, can be expressed as follows:
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3. Numerical methodology

3.1. Numerical details

Since detailed descriptions of the numerical solution method

used herein are available elsewhere [7,13,18], only salient features
are presented here. The governing Eqs. (1–3), subject to the bound-
ary conditions outlined in Eqs. (10–18) have been solved by a finite
difference method based SMAC-implicit algorithm implemented
on a staggered grid arrangement. This is a simplified version of the
MAC method due to Harlow and Welch [26] which has been adapted
for power-law fluids. The diffusive and non-Newtonian terms in the
momentum equation have been discretized using a second order
central differencing scheme, whereas the convective terms were
discretized using the QUICK scheme [27].

3.2. Grid independence

In this study, the case of a single fluid sphere was simulated by
setting the radius of the outer fluid envelope to be 150, i.e., R∞ = 150
[13]; whereas, in the case of ensembles of fluid spheres, the value
of the dispersed phase concentration was varied over the range of
0.2 ≤ ˚ ≤ 0.6 which corresponds to 1.186 ≤ R∞ ≤ 1.71 [7,18]. Further-
more, in the case of a single fluid sphere, a fine grid in the vicinity of
the drop was obtained by using a logarithmic stretching (y = ln r),
as has been done by many others [3–5] and in our recent study
g Journal 141 (2008) 387–392 389

Table 1
Effect of grid size on the value of drag coefficient of a single power-law fluid sphere
at Reo = 500

Grid (� × r) k = 0.1 k = 10

ni = no = 0.6 ni = no = 1.6 ni = no = 0.6 ni = no = 1.6

60 × 240 0.0591 0.1921 0.2853 0.8251
90 × 240 0.0584 0.1935 0.2848 0.8339
90 × 300 0.0604 0.1914 0.2838 0.8434

Table 2
Effect of grid size on the value of drag coefficient of multiple power-law fluid spheres
(˚ = 0.2 and Reo = 200)

Grid (� × r) k = 0.1 k = 10

ni = no = 0.6 ni = no = 1.6 ni = no = 0.6 ni = no = 1.6

45 × 70 0.2598 0.8460 1.0598 3.8771
60 × 70 0.2638 0.8511 1.0560 3.8785
60 × 85 0.2627 0.8407 1.0786 3.8325

[13]. In the case of a single power-law fluid sphere, extensive grid
independence was carried at Reo = 500 and for the extreme values
of viscosity ratio and of the two power-law indices (see Table 1).
It can be seen from this table, that the three grids produce results
which are within ±2–3% of each other. Thus, bearing in mind an
optimum CPU time, the second grid of size 90 × 240 has been used
in the present study for single fluid spheres. Similarly, Table 2 shows
the effect of grid size in the case of multiple fluid spheres of hold-
up, ˚ = 0.2. Once again, the three grids tested here produce nearly
identical results. Thus, a grid of size 60 × 70 (3◦ × 0.025) has been
used in this study for all values of Reo, k, ni, no and ˚. Finally, it
should be noted that the optimum grids found herein are identical
to that used in our previous studies dealing with the Newtonian
dispersed phase [7,13,18].
phases display power-law behaviour with the results of Tripathi
and Chhabra [20]. The present results are in good agreement only
for a mild degree of shear-thinning behaviour and the correspon-
dence between the two deteriorates rapidly with the increasing
degree of shear-thinning and/or the value of k. However, it should be
noted here that the two bounds are not only approximate, but also
coincide only for Newtonian fluids and indeed these diverge from
each other increasingly with the decreasing value of the power-
law index. Therefore, the present results are expected to be more
reliable than the approximate results [20]. Bearing in mind these
factors coupled with our previous experience [7,13,18], the present
results are believed to be accurate to within ±2–4%.

Table 3
Comparison of Cd of ensembles (˚ = 0.2) at Reo = 1

k ni = no = 0.8 ni = no = 0.6

Tripathi and
Chhabra [20]

Present Tripathi and
Chhabra [20]

Present

0.1 32.904 33.2730 25.212 26.6907
1 53.460 51.7383 40.810 38.3104

10 86.570 83.9262 61.740 54.0619
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Fig. 1. Representative streamline patterns of power-law fluid flow over a single Newtoni
values of k.

4.2. Flow patterns

Fig. 1(a–c) shows the streamline patterns for a shear-thinning
fluid (no = 0.6) flowing over a Newtonian fluid sphere, ni = 1 (upper-

Fig. 2. Representative streamline patterns for power-law fluid flow in ensembles of Newto
for different values of k.
an (upper-half) and a power-law (lower-half) fluid sphere at Reo = 200 for different

half) and over a shear-thinning fluid sphere, ni = 0.6 (lower-half)
at Reo = 200 for different values of k. In the upper-half (Newtonian
fluid sphere), for k ≤ 1, the streamlines in the external phase exhibit
fore and aft symmetry; also, the centres of the internal circulations

nian (upper-half) and of power-law (lower-half) fluid spheres for ˚ = 0.2 at Reo = 200
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Table 5
Drag on a power-law fluid sphere in a power-law fluid

Reo k Cd Cd (ni = no)/Cd (ni = 1 �= no)

ni = no = 0.6
200 0.1 0.1454 0.9726

10 0.4306 1.0075

5 0.1 0.8823 0.9959
10 4.9484 1.0383

ni = no = 1.6
200 0.1 0.4001 1.0088

10 1.1923 0.9883

5 0.1 4.2269 0.9919
10 6.5251 0.9949

(no = 1). This dependence is seen to be qualitatively similar as that
reported when the dispersed phase is Newtonian fluid [3–5,13].
This table also shows the effect of the dispersed phase rheology.
The ratio between the drag of a power-law drop (ni �= 1) to that of a
N. Kishore et al. / Chemical Eng

and of the drop are in the same line which is perpendicular to the
horizontal axis thereby showing a perfect symmetry of the inter-
nal flow as that in the external phase. For k = 10, a non-contiguous
wake is formed in the rear end of the drop which is obviously not
due to the flow separation, as the interfacial angular velocity does
not become zero in this case. Also for k = 10, the centre of the inter-
nal circulation moves towards the front stagnation point of the
drop which suggests the presence of excess vorticity which, in turn,
produces a non-contiguous wake without flow separation. Similar
trends can be seen in the lower-half (shear-thinning fluid sphere,
ni = 0.6 in a shear-thinning fluid, no = 0.6) for different values of k.
Fig. 1(d–f) shows the streamline patterns for a shear-thickening
fluid (no = 1.6) flowing past a Newtonian fluid sphere, ni = 1 (upper-
half) and a shear-thickening fluid sphere, ni = 1.6 (lower-half) at
Reo = 200 for different values of k. Once again, in the upper-half
(Newtonian fluid sphere), similar trends are observed for k ≤ 1 as
in the case of a shear-thinning (no = 0.6) continuous phase. But for
k = 10, the non-contiguous wake is attached to the surface of the
drop and also a significant increase in the size of the wake has been

observed. In the lower-half (shear-thickening fluid sphere, ni = 1.6),
similar trends can be seen as in the case of a Newtonian fluid sphere
(upper-half) in a shear-thickening fluid, no = 1.6. Qualitatively sim-
ilar trends observed for other values of Reo, ni, no and k and thus
these are not shown here.

Fig. 2(a–c) shows typical streamline patterns of a shear-thinning
fluid (no = 0.6) in ensembles of Newtonian fluid spheres, ni = 1
(upper-half) and of shear-thinning fluid spheres, ni = 0.6 (lower-
half) of ˚ = 0.2 at Reo = 200 for different values of k. Both upper
and lower halves appear to be mirror image of each other. Similar
observations can be made from Fig. 2(d–f), where the dispersed
phase is changed from Newtonian (ni = 1) to a shear-thickening
fluid (ni = 1.6) by keeping the continuous phase fixed as a shear-
thickening fluid (no = 1.6). Thus, it is clear that even in the case of
ensembles of fluid spheres, the droplet phase rheology has very
little effect on the external flow field.

4.3. Drag phenomena

Table 4 shows the effect of Reo and k on the drag of a single shear-
thinning (ni = 0.6) fluid sphere in a Newtonian continuous medium

Table 4
Drag on a power-law fluid sphere in a Newtonian fluid

Reo k Cd Cd (ni �= 1)/Cd (ni = 1)

ni = 0.6, no = 1
200 0.1 0.2216 0.9982

10 0.7792 1.0539

5 0.1 4.5010 1.0046
10 7.2538 1.0316

ni = 1, no = 0.6
200 0.1 0.1495 –

10 0.4274 –

5 0.1 0.8859 –
10 4.7657 –

ni = 1.6, no = 1
200 0.1 0.2363 1.0644

10 0.7409 1.0022

5 0.1 4.4736 0.9985
10 7.1589 1.0182

ni = 1, no = 1.6
200 0.1 0.3966 –

10 1.2064 –

1 0.1 4.2611 –
10 6.5583 –
g Journal 141 (2008) 387–392 391
Newtonian drop (ni = 1) in an another immiscible power-law liquid

Table 6
Drag on ensembles of power-law fluid spheres in a Newtonian fluid

˚ Reo k Cd Cd (ni �= 1)/Cd (ni = 1)

ni = 0.6, no = 1
0.2 200 0.1 0.4340 0.9857

10 2.0163 1.0084

1 0.1 42.4236 1.0075
10 122.9937 1.0045

ni = 1, no = 0.6
200 0.1 0.2832 –

10 1.0387 –

1 0.1 26.3009 –
10 58.3511 –

ni = 1.6, no = 1
200 0.1 0.4392 0.9982

10 1.9547 0.9778

1 0.1 42.6171 1.0121
10 120.1012 0.9891

ni = 1, no = 1.6
200 0.1 0.8283 –

10 3.9286 –

1 0.1 91.6090 –
10 362.4823 –

ni = 0.6, no = 1
0.6 200 0.1 1.1033 0.9707

10 11.6267 0.9906

1 0.1 128.4827 1.0043
10 1433.9419 1.0250

ni = 1, no = 0.6
200 0.1 0.6296 –

10 3.5175 –

1 0.1 50.0230 –
10 293.1670 –

ni = 1.6, no = 1
200 0.1 1.1549 1.0166

10 11.5123 0.9809

1 0.1 125.9681 0.9831
10 1369.9318 0.9793

ni = 1, no = 1.6
200 0.1 3.139 –

10 72.221 –

1 0.1 574.436 –
10 14180.24 –
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Table 7
Drag on ensembles of power-law fluid spheres in a power-law fluid

˚ Reo k Cd Cd (ni �= 1)/Cd (ni = 1)

n = n = 0.6

[5] A. Saboni, S. Alexandrova, AIChE J. 48 (2002) 2992–2994.
[6] B. Gal-Or, S. Waslo, Chem. Eng. Sci. 23 (1968) 1431–1446.
i o

0.2 200 0.1 0.2638 0.9315
10 1.0560 1.0166

1 0.1 26.6907 1.0148
10 54.0619 0.9265

ni = no = 1.6
200 0.1 0.8511 1.0275

10 3.8785 0.9872

1 0.1 92.3919 1.0085
10 374.069 1.0320

ni = no = 0.6
0.6 200 0.1 0.5995 0.9522

10 3.8335 1.0898

1 0.1 50.4087 1.0077
10 289.680 0.9881

ni = no = 1.6
200 0.1 3.1943 1.0176

10 69.8780 0.9676

1 0.1 568.1614 0.9891
10 13554.15 0.9558

is seen to be almost unity thereby implying the negligible effect of
the dispersed phase rheology for both shear-thinning and shear-
thickening drops under otherwise identical conditions. Similarly,
Table 5 shows the corresponding drag results when both phases
are power-law fluids. Here also, the effect is seen to be extremely
small. This finding is qualitatively consistent with the experimental
investigations of Marrucci et al. [22] and Gillapsy and Hoffer [23].

Tables 6 and 7 show the effects of the Reynolds number Reo

and the characteristic viscosity ratio k on the drag of ensembles
when only the dispersed phase and when both phases behave like
power-law fluids. In this case too, the rheological behaviour of the
dispersed phase is seen to exert virtually no influence on the drag
behaviour of the ensemble. This observation is consistent, at least
qualitatively, with the approximate results of Tripathi and Chhabra
[20].

Thus, in summary, the dispersed phase rheology has relatively
negligible influence on the flow field in the continuous phase for

single and ensembles of droplets. Therefore, their sedimentation
behaviour and the rate of mass transfer in these systems is pri-
marily governed by the non-Newtonian fluid characteristics of the
continuous phase.

Finally, it is appropriate to make two comments at this junc-
ture: firstly, the present results are based on the assumption of
spherical drops (both single and in ensembles). In general, in such
two phase systems, additional complications arise from drop defor-
mation, coalescence, surface active agents, etc. which have been
neglected altogether in the present study. This is justified by the
fact that in Newtonian fluid systems, significant shape distortions
occur beyond a critical value of the Weber number of approxi-
mately 4. This value corresponds to the Reynolds number in the
range of 300–1000 depending upon the physical properties of the
system. Secondly, in non-Newtonian systems, shape distortions are
caused much more by visco-elasticity than that by shear-dependent
viscosity [1]. Furthermore, the propensity for shape distortions
diminishes with the increasing value of the viscosity ratio as the
drop loses its mobility and behaves like a solid sphere. On all these
counts, it is thus reasonable to neglect shape distortions over the
range of conditions covered in this study.

[

[
[
[
[
[
[
[
[
[
[
[
[
[

[
[
[
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Secondly, it is readily admitted that the power-law model fails
to describe the zero shear viscosity and thus does break down
near the stagnation points. On the other hand, stagnation points
are singular points (of zero area) and past experience shows
that in spite of this limitation, it does yield useful results for
flow over a sphere. However, it is desirable to resolve this issue
by carrying out a detailed study employing another more real-
istic viscosity model such as Cross or Carreau fluid model. As
opposed to the two-parameter (m, n) power-law model used here,
both the Cross and Carreau models contain three parameters (if
the role of the infinite viscosity is neglected), and this will thus
add another dimensionless group which combines the rheological
properties with characteristic velocity and linear scale. This will
thus add to the computational effort. Undoubtedly, future studies
will address some of these issues. In summary, in spite of these
limitations, the present results offer useful first order approxima-
tion for the estimation of drag on (or settling velocity of) single and
ensembles of power-law fluid spheres in a quiescent continuous
medium.

5. Conclusions

In this work, it is shown that the rheological behaviour of
the dispersed phase exerts virtually no influence on the detailed
flow field and drag behaviour of a single and of ensembles of
fluid spheres undergoing steady translation in an immiscible qui-
escent liquid even for highly shear-thinning or shear-thickening
conditions. On the other hand, the viscosity characteristics of the
continuous phase play a significant role in governing the hydro-
dynamic and mass transfer characteristics in these systems. Thus,
one can use the existing information to estimate the sedimen-
tation velocity and mass transfer coefficients in these systems
[7,13,18].
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